Genetic testing for atherosclerosis risk: Inevitability or pipe dream?

Matthew Lanktree BSc, Jisun Oh MD, Robert A Hegele MD FRCPC FACP

Coronary artery disease (CAD) risk factors have been incorporated into algorithms for risk assessment, such as the Prospective Cardiovascular Münster (PROCAM) study (1) and Framingham risk equations (2,3). However, many CAD events occur in the absence of known risk factors (4,5), while most individuals who never develop CAD have one or more risk factors (6). For this reason, identifying new risk factors is considered to be important for enhancing sensitivity and specificity of risk algorithms (4-6). In 2007, several reports (7-9) brought the potential value of genetic markers in CAD risk assessment and stratification closer to reality.

GENETICS OF CAD

Family history is a risk factor for coronary artery disease (CAD). However, defining this risk at the DNA level has been elusive. In 2007, four genome-wide association studies reported a strong association between CAD and a region on chromosome 9p21. The high-risk genotype was identified in up to 30% of individuals, creating the potential for a clinical genetic test to assist in the calculation of a patient’s CAD risk. However, the reported effect size of the association is modest (OR of approximately 1.3). The present paper examines the feasibility of including DNA tests in CAD risk prediction algorithms. The greatest contribution from the 9p21 association is likely yet to come, as further studies identify the mechanistic basis for the association, possibly leading to additional insights into the progression, prevention and treatment of CAD.

Test génétique pour le risque d’athérosclérose : Inévitable ou solution à la « Pipe Dream »?

Si les antécédents familiaux constituent bel et bien un facteur de risque à l’égard de la coronaropathie, sa détermination à l’échelle de l’ADN nous elde toujours. En 2007, quatre études d’associations pangénomiques ont fait état d’un lien solide entre la coronaropathie et une région du chromosome 9p21. On a observé le génotype associé au risque élevé chez jusqu’à 30 % des sujets, ce qui ouvre la porte à l’éventuelle mise au point d’un test génétique unique pour faciliter le diagnostic du risque coronarien d’un patient. Or, l’effet de taille rapporté de ce lien est modeste (RR environ 1,3). Le présent article analyse l’applicabilité des tests d’ADN dans les algorithmes de prédiction du risque coronarien. La contribution la plus importante de ce lien avec le chromosome 9p21 n’a pas encore été identifiée, puisque d’autres études portent sur les fondements mécanistes du lien, ce qui pourrait mener à d’autres pistes pour l’étude de la progression, de la prévention et du traitement de la coronaropathie.

EVALUATING GENETIC DETERMINANTS OF DISEASE

Genetic linkage and association studies have endeavoured to implicate genes that may predispose patients to CAD end points, such as myocardial infarction. Historically, the most common approach was the study of a single gene using case-control designs. Hundreds of DNA polymorphisms in scores of genes encoding proteins involved in lipid metabolism, thrombosis and vascular biology have been associated with increased CAD risk (17,18). Limitations of candidate gene association studies are well known (18). Recent genome-wide association (GWA) studies suggest the existence of genetic markers consistently associated with CAD that may be translated into useful predictive tests (7,19,20). In addition, unbiased GWA studies have the ability to detect previously unsuspected associations (7,19). Finally, GWA studies examining the genetic basis of traditional risk factors, such as lipid concentrations, may also contribute to a predictive test (20,21).

Technological advances include availability of dense genotyping microarrays examining 10^6 to 10^7 single nucleotide polymorphisms (SNPs); large, well-characterized clinical samples often pooled between different groups (13); and evolved bioinformatic capacity.
Chromosome 9p21: A CAD locus discovered by GWA studies

The Wellcome Trust Case Control Consortium explored genetic associations of several complex diseases, including CAD (7,19). A powerful association of CAD was observed with a region on chromosome 9p21.3. The strongest signal was seen with SNP rs1333049 (P=1.80 × 10−14), but association was seen for other SNPs across more than 100 kilobases. The RR for the susceptibility genotypes was approximately 1.4. This region harbours genes encoding two cyclin-dependent kinase inhibitors, CDKN2A (encoding p16INK4a) and CDKN2B (p15INK4b), although SNP rs1333049 was outside both genes. Eight other loci were found to be strongly associated with CAD (7,19). A further analysis of the Wellcome Trust Case Control Consortium and a sample of German subjects (19) identified several CAD-associated loci, with chromosome 9p21.3 SNP rs1333049 having the strongest association in both samples (P=1.80 × 10−14 and P=3.40 × 10−6, respectively) (19).

Two other GWA studies from 2007 supported the association of CAD with markers on chromosome 9p21: a 58-kilobase interval was associated with CAD in six samples (9) and an SNP in this region was associated with myocardial infarction (8). Each study showed a relative CAD risk of approximately 1.4, with stronger associations observed with SNPs outside the known genes. A recent report (22) confirmed the CAD association with 9p21 in a Korean population with a risk ratio of approximately 1.3. There is no biological explanation yet for the chromosome 9p21 SNP associations with CAD; indeed, new aspects of biology may be involved (9). Despite such modest ORs, the findings' consistency suggests a special relationship between CAD and chromosome 9p21 (GWA data are summarized in Table 1).

HOW MANY GENOTYPES MAY BE REQUIRED TO PREDICT CAD RISK?

The population-attributable fraction (PAF) is defined as the proportion of disease cases in a population resulting from a particular risk factor (16). A risk factor cluster with PAF of 30% to 50% would be considered to have excellent potential for clinical use. But how many genetic variants will be required to produce such a PAF for CAD? Very large numbers – up to 100 or more – of rare genotypes (eg, those with a frequency of less than 1%) would be required to explain a PAF of 50%, even if the at-risk genotype frequency is 10% in the population that has a risk ratio of 1.5 for development of CAD. The number of markers with such a risk ratio and genotype frequencies needed to explain a PAF of 50% ranges between 15 and 20. On the other hand, approximately 20 genotypes are needed to explain 50% of the burden of a disease in the population if the predisposing genotypes are common (more than 25%), even if the risk ratios for each variant are large (ie, 10 to 20). On the other hand, approximately 20 genotypes are needed to explain 50% of the burden of a disease in the population if the predisposing genotypes are common (more than 25%), even if the risk ratios for each variant are large (ie, 10 to 20). To further illustrate, imagine a genotype with a frequency of 10% in the population that has a risk ratio of 1.5 for development of CAD. The number of markers with such a risk ratio and genotype frequencies needed to explain a PAF of 50% ranges between 15 and 20.

WILL GENETIC TESTING BE CLINICALLY USEFUL?

For a diagnostic test to enter the clinic, it must provide additional predictive power over and above traditional risk factors that are easily and inexpensively measured (23). One method to evaluate added...
diagnostic or predictive value of a test is the receiver-operating characteristic curve (24). The predictive power of a diagnostic test can be evaluated by the area under the receiver-operating characteristic curve (AUC) (24). A perfect test has an AUC of 1, while a test with no discriminatory power has an AUC of 0.5 (24). The discriminatory predictive power of the Framingham and PROCAM CAD risk algorithms (1,3) have AUC of 0.62 and 0.63, respectively (25). Hence, established risk indexes have moderate predictive power for CAD. Humphries et al (23) studied the apolipoprotein E gene and showed limited additional predictive power over classic CAD risk factors. The reported CAD OR is approximately 1.4 for carriers of the E4 allele, with a prevalence of 15% (21,25). Compared with PROCAM, adding the apolipoprotein E gene genotype nonsignificantly increased the AUC from 0.63 to 0.67 (P=0.11) (23). Thus, the inclusion of a single genetic risk factor with OR of 1.4 and prevalence of 15% may have limited predictive power over established risk factors.

Three recent studies (26-28) have attempted to incorporate genotype information from multiple markers into a single genetic test (26-28). Drenos et al (26) found individuals with six, and seven or more risk genotypes had a higher risk of CAD than those with only three or four risk genotypes (OR approximately 1.7 and 4.5, respectively), but did not compare results with traditional risk factors alone. Humphries et al (27) created a weighted model for CAD susceptibility based on four genotypes and three environmental interaction components. The resulting AUC was significantly better than that using traditional risk factors alone (AUC of 0.72 versus 0.62, P=0.01). However, as the authors stated, evaluating the effectiveness of a model based on the data that produced the model is perilous, and replication in different samples is required (27,29). Kathiresan et al (28) did not observe a significant change in the AUC between a 14 clinical covariate risk-prediction model with or without the addition of genotype information in nine cholesterol-associated genes. In a second retrospective analysis, Kathiresan et al (28) examined the number of individuals who would have been reclassified from the middle- to high-risk group (34 of 340), and five of these 34 subsequently had an event using a new statistic called the ‘net reclassification improvement’ (30). Many statisticians are supporting the validity of the statistic but caution that it does not fully address all factors required to determine whether a test should be in clinical use (31-33).

SUMMARY

Advances in molecular genetics have made large-scale GWA studies of CAD a reality. The CAD-associated locus on chromosome 9p21 has generated considerable excitement. However, this locus may represent the ‘low hanging fruit’ for genetic susceptibility to CAD. Subsequent studies to find additional significantly associated markers with even more marginal RR ratios (eg, approximately 1.10 or smaller) require hundreds of thousands of patients; the clinical relevance of such markers would be even less obvious. Clinical practice guidelines currently dictate that a patient’s management is based on the evaluation of traditional risk factors. It is possible that the inclusion of a genetic test could shift an individual between risk strata, affecting treatment decisions. However, before any such test is applicable to clinical practice, the finding must be applicable across populations, not to mention the implications on cost for testing and medication, possible negative consequences of over-treatment, and testing of the success of potential therapies. Further research to understand the architecture of genetic susceptibility, characterize the pathophysiological mechanisms underlying genetic associations, define interactions between genetic variants and the environment, discover new forms of variation and validate genetic associations across additional populations are all required before routine genotyping for CAD risk can be considered ready for ‘prime time’.

REFERENCES

1. Assmann G, Callen P, Schulke H. Simple scoring scheme for verifying the validity of the statistic but caution that it does not fully
test (26-28). Drenos et al (26) found individuals with six, and seven or more risk genotypes had a higher risk of CAD than those with only three or four risk genotypes (OR approximately 1.7 and 4.5, respectively), but did not compare results with traditional risk factors alone. Humphries et al (27) created a weighted model for CAD susceptibility based on four genotypes and three environmental interaction components. The resulting AUC was significantly better than that using traditional risk factors alone (AUC of 0.72 versus 0.62, P=0.01). However, as the authors stated, evaluating the effectiveness of a model based on the data that produced the model is perilous, and replication in different samples is required (27,29). Kathiresan et al (28) did not observe a significant change in the AUC between a 14 clinical covariate risk-prediction model with or without the addition of genotype information in nine cholesterol-associated genes. In a second retrospective analysis, Kathiresan et al (28) examined the number of individuals who would have been reclassified from the middle- to high-risk group (34 of 340), and five of these 34 subsequently had an event using a new statistic called the ‘net reclassification improvement’ (30). Many statisticians are supporting the validity of the statistic but caution that it does not fully address all factors required to determine whether a test should be in clinical use (31-33).

SUMMARY

Advances in molecular genetics have made large-scale GWA studies of CAD a reality. The CAD-associated locus on chromosome 9p21 has generated considerable excitement. However, this locus may represent the ‘low hanging fruit’ for genetic susceptibility to CAD. Subsequent studies to find additional significantly associated markers with even more marginal RR ratios (eg, approximately 1.10 or smaller) require hundreds of thousands of patients; the clinical relevance of such markers would be even less obvious. Clinical practice guidelines currently dictate that a patient’s management is based on the evaluation of traditional risk factors. It is possible that the inclusion of a genetic test could shift an individual between risk strata, affecting treatment decisions. However, before any such test is applicable to clinical practice, the finding must be applicable across populations, not to mention the implications on cost for testing and medication, possible negative consequences of over-treatment, and testing of the success of potential therapies. Further research to understand the architecture of genetic susceptibility, characterize the pathophysiological mechanisms underlying genetic associations, define interactions between genetic variants and the environment, discover new forms of variation and validate genetic associations across additional populations are all required before routine genotyping for CAD risk can be considered ready for ‘prime time’.

REFERENCES

7. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661-78.